慶大理工数学'06[A1]

(1) abcdは実数とする。関数

がすべてのxで微分可能であるとき、a ア d イ である。
(2) 定積分
の値は ウ となる。
(3) abは実数とする。どのような実数pqに対しても
となるのは、a エ b オ のときである。

解答 (1)() ()は、となる全てのxで微分可能(微分・導関数を参照)です。
()は、となる全てのxで微分可能です。
()は、となる全てのxで微分可能です。
従って、全ての
xが微分可能となるためには、において微分可能であればよいことになります。

において微分可能であるために、まず、において
連続であることが必要で、
 ・・・@
また、において左側微分係数と右側微分係数が一致する
(微分・導関数を参照)ことが必要で、
左辺は、
右辺は、
より、
 ・・・A

において微分可能であるために、まず、においてが連続であることが必要で、
 ・・・B
また、において左側微分係数と右側微分係数が一致することが必要で、
左辺は、
右辺は、
 ・・・C

C−Aより、
......[]

() Cより、
@より、
Bより、
......[]

(2)()
とおくと、xのときt (置換積分を参照)
とおくと、tのときu
......[]

(3)()()
 (部分積分法を参照)







これが、どのような実数pqについても成り立つためには、
 (恒等式を参照)
......[]


   慶大理工数学TOP   数学TOP   CHALLENGE from the VOID   TOPページに戻る

(C)2005,2006,2007,2008,2009
(有)りるらる
CFV21 随時入会受付中!
CFV21ご入会は、まず、
こちらまでメールをお送りください。
 雑誌「大学への数学」購入